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Guidelines for verification of hydrologic deterministic and probabilistic 
forecasts developed as an addition for MOFFS of WMO using latest advances in statistical analysis of hydrometeorological information. They allow evaluating the applicability of forecasting methods, choosing of optimal forecasting algorithms, and determination of the direction for their further improvement.
The objective is to improve effectiveness and quality of water management activities planning and operational decision making in water-related hazard management and water resources management.
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Introduction
Hydrologic forecasting service primary mission is to provide reliable and timely forecasts for economy and population to ensure environmental safety and effective and safe water management operations. Effectiveness of hydrologic forecasts based water management planning and that of operational decision making in water-related hazard management and water resources management depend largely on the quality of those forecasts. The quality of hydrologic forecasts is defined in turn by their accuracy and lead time. Therefore, the development of modern objective methods for evaluating the quality of operational river flow forecasting methods is of great scientific and practical importance.
The proposed Recommendations are in line with WMO Management overview of flood forecasting systems (MOFFS) [28, 32, 37]. They can be applied to other hydrologic forecasts. To estimate deterministic and probabilistic hydrologic forecast error and to assess the forecast applicability, the system of statistical methods is recommended. The use of those methods allows for obtaining objective quality assessment of hydrologic forecasting algorithms. Using these methods allows for selecting optimal algorithm and developing scheme enhancement strategies taking into account the specific features of forecasting algorithm, as well as the amount of hydrologic and meteorological data, their contents and quality investigated during forecasting method development, testing and operational use.

The analysis of general problems related to hydrologic forecasts quality assessment is presented in Chapter 1. Recommendations for deterministic forecasting methods verification are presented in chapters 2, 3, and 4. Recommendations for probabilistic forecasting methods development and verification are presented in chapters 5 and 6.

Chapter 1.  Stating the problem of hydrological forecast verification
1.1 General considerations
The purpose of hydrologic forecasting is to predict the expected future water regime characteristics for rivers, channels, lakes, reservoirs, and other water bodies. Hydrologic forecasts are used for water resources management and water-related hazard management planning and operational activities [17].

River flow, river stage, flow velocity, flow depth, and runoff volume are water regime characteristics of rivers and channels at given points, as well as of reservoir inflow. Water stage and volume are water regime characteristics of lakes and reservoirs.

Their means, maximums, and minimums, as well as their changes over time, are forecasted for one day, a ten-day period, a month, a quarter, a season, a separate flood, a flood wave, ice season, or navigation season.

Mean, maximal and minimal ice thickness, dates of ice phenomena beginning, freezing, opening and breakup dates, and autumn and spring ice run dates are predicted ice regime characteristics of rivers, channels, lakes, and reservoirs [12, 13, 14, 17].

Hydrologic forecasts are issued once a day, a ten-day period, a month, a quarter, a season, a year. Deterministic forecast provides a future value 
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 of an element of regime of the water body expected on date 
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. Probabilistic forecast provides different characteristics of conditional probability distribution of value 
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 depending on hydrometeorological information available on the date of forecast issue. The forecast lead time is the difference 
[image: image4.wmf]0

t

t

-

  between the date 
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  and the date of forecast issue 
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. The required forecast lead time is defined by the time period necessary for taking action on water resources management and water-related hazard management. The lead time possible to achieve depends on the evolution rate of forecast processes for certain water body and its catchment, as well as on meteorological forecast quality and hydrologic forecast service technical resources.

According to WMO classification, short-range forecasts are those with lead time of up to 2-3 days; medium-range forecasts, with that of 3-4 to 9-10 days; long-range forecasts, with lead time over 9-10 days. In a number of countries, short-range hydrologic forecasts are those with lead time up to 5-6 days; medium-range, with that of 6-7 to 12-15 days; long-range forecasts, with lead time over 12-15 days [1, 17, 18, 27].

The definition of forecast lead time categories is rather subjective. For instance, the forecast of the same element of the water regime may be classified as short-range forecast for a minor mountain river and as medium- and even long-range forecast, for a major plain river. The lead time of forecast of characteristic dates of hydrologic regime is defined by the forecast [5].

Forecast development relies on the information about river, lake, reservoir, etc. and its catchment.

Antecedent changes in hydrologic and meteorological parameters, as well as predicted weather changes over the hydrological forecast lead time period, are taken into account when producing a hydrologic forecast.
The forecast is based on a general method, a general approach to solving a problem, based on physical essence of processes which determine a predicted event or a predicted element of hydrologic regime. Depending on the specific features of the forecast, those methods reflect the regularities of catchment flow formation, of water motion within the river network, of heat exchange of water mass and ice cover with atmosphere and river bed or reservoir bed [13, 14, 15, 17].

Various forecasting models are designed basing on those methods: physically based distributed models, conceptual lumped or semi-distributed models, statistical relationships between the predicted element and the known hydrometeorological parameters on the date of forecast issue [1, 10, 26, 28, 30].

Hydrologic element forecasting method (algorithm) is based on one of the above mentioned general methods listed above. It represents specific features of a water body and of its hydrologic regime, as well as the amount and quality of hydrometeorological information used for algorithm development and available when operating that algorithm, including weather changes over the hydrological forecast lead time period and their assimilation techniques [5, 18].
 Forecast updating is possible for some long- or medium-term forecasts. For example, snowmelt flood forecast is updated after most seasonal snow cover has melted. Additional new data, not available by the moment of issuing the forecast, are used for forecast updating [1, 27, 41]. Thus, the scheme of forecast updating should be considered as a stand-alone forecast method [5].

For a given lead time and given catchment, the quality of stream flow characteristics forecasting method is defined by its error. According to the International Institute of Forecasters research results, forecast accuracy is a principal quality index for 90 % of forecast users [44].

The factors contributing to forecast error have been well studied by now. The forecast scheme error sources are defined by the following factors: 

– forecast lead time;

-  specific features of event formation and its spatial and temporal variability;

– adequate and full description of predicted event;

– predictor representativeness and effect of factors not taken into account;
– initial data representativeness, amount and accuracy;

– parameter estimation accuracy;

– the role of meteorological elements and the accuracy of their forecasting [5, 7, 16, 32, 38].

In many cases, input weather forecasts are the primary source of errors of hydrological forecasts [16, 34]. To identify hydrological and weather forecast errors when evaluating river flow forecast errors, it is proposed in some cases to use observed meteorological data for the period of lead time of certain hydrological forecast [5, 18, 13, 14].

Hydrologic regime elements forecasting method are based on hydrometeorological information about variability factors of these elements available on the date of forecast issue. An alternative forecast is based on long-term data statistical analysis of predicted element only. Climatology forecasting method (“climatology”) using mean long-term value of predicted element could be considered such unconditional alternative for long-range hydrological forecasts as well as for some medium-range forecasts. Inertial, or persistence forecast (“persistence”) using the known value of forecast element for the date of forecast issue could be considered an unconditional alternative for short-range and some medium-range hydrological forecasts. The practical use of a hydrological forecast method is reasonable if its accuracy is higher than that of alternative forecast [5, 18].
Forecast verification implies statistical analysis of the relation between actual values of hydrologic regime elements and their forecast values using this scheme. Verification procedures are the final necessary step to complete the process of forecast scheme development and implementation. Hydrological forecast error determination and analysis are an essential step in the process of scheme development and operation. First of all, for a given forecast lead time, forecast error is the key index of practical value of that forecast. Moreover, forecast error analysis allows for determining scheme weaknesses and outlining strategies for scheme enhancement. Analysis results for a set of forecast of different elements of hydrologic regime within a whole region may determine and prove the strategies for improving the hydrometeorological observation network and hydrometeorological data acquisition and processing system [5, 16, 27, 28, 32, 37].

1.2 Determination of hydrologic forecast error
Determination of hydrological forecast error is based on the assumption that the relationship between an observed value 
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of some hydrological variable and its predicted value 
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 has not changed since scheme development to its operational implementation. Thus, deterministic forecast scheme error is determined as mathematical expectation of a particular forecast error measure, which is the probability-weighted average of all possible values of 
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. In case of issuing forecasts throughout the year, it is reasonable to determine the forecast methodology error for particular seasons or months.

Actual values of hydrological variables have measurement or computation errors. Their possible values of magnitude are presented in [16]. In case of measuring discharge in floodplain-vegetated wide rivers or in mountain rivers with actively changing channels and therefore changing rating curves, there might be considerable measurement (computation) errors. The error of determining the actual value of a predictand is the lower limit of possible forecast error value. If a forecasting scheme error is close to that determination error, further methodology improvement is unreasonable [5].
Considering the world hydrological forecasting practice, mean squared forecast error is the most popular forecasting scheme error index, which is natural and simple in terms of mathematical sense:
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If a power value greater than 2 is used, the only one large forecast error might determine the total forecast error.

Forecasting model parameters are estimated using the easiest and most widespread least squares method. 

Using some other measure of forecasting scheme error appears to be very difficult in terms of mathematical computations.
Using mean absolute forecast error is considered in a number of papers. In this case, parameter estimation is largely hampered, though using modern computational resources might solve this problem [1, 26, 28, 32, 37, 40, 41].
In case of low values of a hydrological predictand, e.g., low flow forecasting, mean squared relative forecast error can be used as the measure of forecasting scheme error. However, it is important to recognize the possible large values of that measure in case of extremely low predictand values even using a good forecasting scheme.
In case of large values of a hydrological predictand, e.g. flood peak flow forecasting, the mathematical expectation of 
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 can be used as the measure of forecasting scheme error. However, using such an approach, forecast errors are virtually not taken into account in case of low predictand values.
Using mean squared forecast error of logarithmized hydrological variable is recommended in a number of papers, providing more arguments for using normal probability distribution for describing forecast error variability [19, 26, 28, 32, 37, 40, 41]. However, the reasons for using logarithimizing or another normalizing transformation for model parameters estimation must be proved each time, as it does not ensure an optimal statistical solution for a hydrological predictand itself. Simplification of forecasters’ task should be in agreement with the needs of hydrological forecast users, who do not need forecasts of logarithmized hydrological characteristics [5].
When choosing the best index of some forecasting scheme error, the needs of forecast users must be taken into account as well. Depending on particular water-management conditions, there might be different measures of forecasting scheme error due to different end-users of the same hydrological forecast [3, 5, 27, 33]. In light of the above, consider two reservoir inflow forecasting examples.

Example 1.

In case of extreme flood peak warning, water release rate to tail water must be rapidly increased [3]. If the flood peak is overforecasted, such activities are unwarranted and may result in increasing water deficit risk in the following low-flow period. However, the effect of largely underforecasting the flood peak may be considerably more dramatic and even catastrophic. In both cases, the cost of inaccurate forecast also depends upon the reservoir state. At high storage level, the negative effects of underforecasting would be greater than those at low level [3, 5]. Therefore, forecast error index should be increasing with rising storage level; in case of underforecasting reservoir inflow, that error index value should be large.

Example 2. 

In case of warning of stream flow dramatically dropping to low values during low-flow period, urgent reduction in water release rate to tailwater is needed [3]. In case of underforecasting, such activities result in unwarranted hydropower plant productivity reduction, as well as in reduced possibilities for water use in the tailwater.  However, overforecasting may lead to even more severe economical and environmental damage. In both cases, the cost of inaccurate forecast also depends upon the reservoir state. At high storage level, greater negative effects are related to overforecasting, whereas at low level, to underforecasting [3, 5]. Therefore, forecast error index should be increasing with falling storage level; in case of overforecasting reservoir inflow, that error index value should be large.

As there can be several users of the same hydrological forecast and therefore, several measures of forecast error, a weighted average of individual ‘user’ measures can be used when developing and operating that forecasting scheme. In this case, the weights are proportional either to the scale of those users’ water management activities, or to the fees charged for forecasts [5].
The measure of deterministic hydrological forecast error considered in these Recommendations (see equation (1.1)) is the most widely used, the easiest and the most versatile.

Usually, the units of measure of a hydrological predictand and forecast error measure are the same. Thus, the accuracy of forecasting scheme is characterized by square root 
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[image: image15.wmf]V

.

Cost-effectiveness analysis of hydrologic forecasts provides additional argumentation in support of the forecast error measure under consideration.
1.3 Cost effectiveness of hydrologic forecast

Cost-benefit analysis of using hydrological forecasts in water management allows for determining affordable costs for development and implementation of different forecast schemes and development of hydrometeorological monitoring system. At the same time, concerning particular water management activities, taking into account specific features of a forecasting scheme becomes possible of methodology development and implementation, from parameter estimation, validation, verification and applicability assessment to choosing an optimal operational forecasting scheme [5, 17, 33].
In general, the task of cost-effective and environmentally-friendly use of water resources comes to the search of an optimal set of water management decision parameters 
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 ensuring maximum possible mean (or guaranteed) economic effect of water management activities 
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 over the design period under conditions of environmental safety. Water use fees, costs of water protection activities, and possible losses due to hydrological hazards are taken into account when defining that optimal parameter set.
Consider a situation when economic effect of using water resources of a river, reservoir, etc. depends upon a variable 
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 characterizing its water regime and is therefore expressed as a function 
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 were known when making a water management decision defined by vector 
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, that function would be defined precisely. Within the frameworks of environmental safety requirements, precise optimal 
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 reaches its maximum. Replacing actual value 
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 with its forecast 
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, an approximate optimal decision 
[image: image26.wmf]*

0

U

 such that 
[image: image27.wmf])

~

,

(

Y

U

E

 reaches its maximum can be found. Due to forecast errors, the functions 
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 might not be the same for different values of 
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. Therefore, approximate decision 
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, the difference between possible maximum value of economic effect 
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When optimizing the costs of water protection activities or losses related to hydrological hazards, definition of optimal parameters comes to finding the maximum of inverse cost (or loss) function. In such case, 
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 is the measure of additional expenses or additional losses due to forecast error.

This is demonstrated in Figure 1.1.
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Figure 1.1. Definition of lost profit 
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In each individual case, lost profit 
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 is defined by forecast error and contribution of hydrological variable 
[image: image45.wmf]Y

 to function 
[image: image46.wmf])

,

(

Y

U

E

 [33]. In case of no systematic forecast error, the difference 
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 might be considered a random value with zero mean and variance 
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 defined by equation (1.1). Mathematical expectation of 
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 is the value of mean lost profit 
[image: image54.wmf])

(

E

M

D

 approximately defined by the following equation:

[image: image55.wmf])

(

E

M

D

= 
[image: image56.wmf]V

l

,









(1.3)

where 
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 is a measure of mean economical loss due to inaccurate hydrological forecasts, defined by second partial derivatives of function 
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 and components of water management decision vector 
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Equation (1.3) shows that mean lost profit is proportional to 
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 defined by equation (1.1) as mean squared forecast error, which is the most widely used measure when defining economical loss due to inaccurate hydrological forecasts as mean lost profit.

In case of a more accurate forecasting scheme (
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), reduction in lost profit, additional expenses or additional losses is defined by the value 
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, which is the upper limit of cost-effective expenses for developing and operating a more accurate forecasting scheme.
In a number of cases, using a less accurate though less expensive forecasting method may appear cost - effective. Denote the error of a less accurate alternative forecast (“climatology” or persistence) by 
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. Using less accurate alternative forecasts may result in increasing lost profit, additional expenses or additional losses. That increase is defined by the value 
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, which needs to be compared with the cost of forecasting scheme development, informational support and operation. If that cost is greater than lost profit reduction, using that scheme is unreasonable in terms of cost effectiveness [5, 17, 33].
Chapter 2.  Estimation of deterministic forecast error
2.1 General principles of forecast error estimation

Hydrological forecast error 
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 is defined by formula (1.1) as mean squared difference between its actual value 
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 predicted using considered scheme. Before presenting the measure 
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 estimation methods, considering forecast error estimation using dependent sample would be useful.

Consider a hydrological forecasting method based on 
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-year joint hydro- and meteorological observation data. If average number of annually issued forecasts is 
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 of hydrological observations of predicted value taken into account when developing that method is 
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 forecasts. As a result, a test forecast error series 
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 is generated. Forecasting method error is characterized by the following index:
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where 
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 is the number of forecasting model or formula parameters estimated using the same data of 
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 hydrometeorological observations. In case of using graphs representing the relationship between predictors and predictand, 
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 is defined using the following rule: 
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= 2 for a linear relationship between one predictor and predictand; 
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= 3 for a parabolic, exponential or logarithmic relationship, etc. [1, 15, 18, 26, 32].
Very important aspect of considered problem is that the test forecast error series used for producing the estimate 
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 was generated based on the data used for developing the evaluated forecasting method. Choosing predictors, developing the forecasting formula, estimating its parameters or plotting relationship graphs was performed in such a way that the discrepancy between observed and predicted values 
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Due to the fact that dependent sample–based estimate 
[image: image90.wmf]2

S

 is characteristic of only residual variance 
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 of the relationship between predictors and predictand 
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, the true value of forecast error is therefore considerably underestimated. There is a relationship between that residual variance 
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where 
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 is a correlation ratio characterizing the predictors–predictand relationship strength, the coefficient of correlation between observed and predicted values 
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. In case of using a linear regression equation for forecasting, 
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 is equal to multiple regression coefficient [5].

Forecast error is defined by forecasting method robustness against the used observation data as well. Ceteris paribus, the larger the number of predictors and parameters (or the more flexible the set of relationship graphs), the lower the robustness of that predictors–predictand relationship and the larger the difference between residual variance 
[image: image101.wmf]2

~

s
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 [17, 19, 23, 31, 38].
To recognize the discrepancy between 
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, consider a case when stochastic relationship between predictors (components of vector 
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 is described by a linear regression model for each date of forecast issue over the observation period and over projected period of operational use:
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As a rule, predictors–predictand relationships have an absolute term ensuring the absence of systematic forecast errors. In such cases, one of the above functions, for instance,
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 components known on the date of forecast issue allows for more comprehensive and adequate description of predicted hydrological event. The number 
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Model parameters are estimated using the least squares method basing on 
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 joint hydro- and meteorological observation series. For each date of forecast issue
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where 
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The relationship between residual variance 
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The formula (2.5) given in [23] shows that forecast error is rapidly increasing with increasing number 
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 of parameters, as residual variance 
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 is not that rapidly decreasing due to more comprehensive and adequate description of predicted event. The above results in a well-known fact, that in case of verification using independent sample, simple but robust forecasting methods quite often appear to be more accurate than those using comprehensive and adequate models with many parameters to be estimated [5, 17, 23, 28, 37, 41].

When searching for optimal forecasting method, using the estimate 
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 may lead to drawing wrong conclusions. Increasing number 
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 of parameters allows not only for more adequate representation of actual 
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 relationship but also for taking more predictors into account. As a result, dependent sample–based standard forecast error estimate 
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, whereas forecast error 
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 is increasing after reaching its minimum for an optimal value of 
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 (see Figure 2.1) [5, 17].
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Figure 2.1. Schematic relationship plots of dependent sample–based forecast error 
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 and the number 
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 of estimated parameters (lower curve) and of actual forecast error 
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 and 
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 (upper curve) [17]
When estimating the error of forecasting scheme, possible statistical relationship between forecast errors of different issue dates (first of all, of adjacent dates) must be taken into account. Such a relationship may occur due to autocorrelation between predictand and its predictors including those not taken into account by the forecasting model. In case of short-range flow forecasting of major rivers, especially over low-flow period, there may be especially strong 1-day lagged forecast error autocorrelation [5, 24].
In accordance with hydrological forecasting traditions, in order to avoid over-complication of further analysis, it is reasonable to suppose that test forecast error autocorrelation is described by simple first-order autoregression model with one parameter, 1-day lagged forecast error correlation coefficient 
[image: image165.wmf]1
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 [22, 24, 35, 39].
For a linear regression model (2.3), the measure 
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 is systematically underestimating residual variance; its average value is equal to:


[image: image167.wmf])

(

2

S

M

= 
[image: image168.wmf]2

~

s


[image: image169.wmf])

1

(

-

-

-

k

N

k

N

.
[image: image170.wmf]]

)

r

1

)(

(

r

1

1

[

1

1

-

-

+

-

k

N

.




(2.6)
Standard statistical estimate of coefficient 
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(2.7)
Anderson test is recommended for evaluating statistical significance of estimate 
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 [22, 24]. According to that test, a hypothesis of no test forecast error correlation may be accepted, if the following inequality is true:
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where 
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 is the normal probability distribution quintile for significance level 
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=5%. If condition (2.8) is not satisfied, there is significant test forecast error autocorrelation. Otherwise, 
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2.2 Forecast error estimation methods
Depending on the volume and composition of available observation data used for developing and testing a forecast, one of the following methods is recommended for estimating deterministic hydrological forecast error [5].

Method 1.

If 
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 forecasts of a hydrological variable 
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 were issued using developed and implemented hydrological forecasting scheme, a series of forecast errors 
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 is generated, representing the results of testing using independent sample. Forecast error estimate computed from that series is defined by the formula:
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The estimate 
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For proper use of estimates 
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The formulas (2.10) and (2.11) are in accordance with the above-considered linear regression model (2.3) where daily random fluctuations of 
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 are stationary first-order autoregressive Gaussian random process [5, 22, 24]. Forecast error autocorrelation coefficient estimate 
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 As more observation data is available, a hydrological forecast may be corrected (updated) by re-estimating model parameters or refining the relationship graphs, which results in changing that forecasting method, in fact, in developing a new one which has to be tested separately.
Method 2.
In case of quite long 
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-year hydro- and meteorological observation data series, a “leave-p-out” cross-validation method can be used [5, 9, 19, 27, 29, 32, 38]: ‘truncated’ 
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. That test data subset should be used for estimating the forecast error using a formula similar to (2.9).
Test dataset–based forecasting scheme remains the same, though its parameters or graphs may change. Thus, it is reasonable to change the indications and to denote such forecast by 
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Using less observation data leads to lower accuracy of model parameters estimation. As a result, ‘truncated’ forecast error is somewhat larger than actual forecast error 
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 derived from full data set of 
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 observations. A correction coefficient resulting from formula (2.5) may be used to eliminate that fault [5]. If 
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 parameters of forecasting scheme are to be estimated, the forecast error estimate computed from all 
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 observations should be defined by the following formula:
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Root mean squared errors of estimates 
[image: image226.wmf]*

II

V

 and 
[image: image227.wmf]*

II

V

 are approximately calculated using the formulas (2.10) and (2.11).

Accuracy of that method may be considerably improved using the following approach: the above procedure should be repeated 
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Root mean squared errors of estimates 
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 are approximately calculated using the formulas (2.15) and (2.16) given below.

Method 3.
Consider a less favorable situation when original hydro- and meteorological observation data sample is quite short, not allowing for obtaining a validation set long enough, whereas no operational verification has been performed yet or there is still not enough data available for error estimation using the above method 1. In this case, a “leave-one-out” method, based on J.W. Tukey’s “jack-knife” method, is optimal [5, 23]. In case of small 
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In respect of theoretical results presented in [23], approximate root mean squared errors of estimates 
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Method 4.
The presented verification method is the easiest, allowing for validating the forecast using a dependent sample (the same data used for scheme development). This method is based on a hypothesis that stochastic relationship between predictors and predictand is described by a linear regression model (2.3) and daily random fluctuations of 
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 are stationary first-order autoregressive Gaussian random process [5]. However, it is possible to use this method under less strict conditions: there must be a relationship between predicted runoff characteristic and its predictors expressed as (2.4) and its 
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 parameters are estimated using least squares method. Using the estimates 
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 defined by formulas (2.1) and (2.7), respectively, forecast error can be estimated as follows:
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In respect of theoretical results presented in [5, 23], approximate root mean squared errors of estimates 
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The following guidelines are recommended for deterministic hydrological forecast verification:

1. If there are enough operational forecasts issued to form an independent validation data set, it is reasonable to use method 1. Otherwise, one of the remaining three methods should be used.

2. If there is enough joint hydro- and meteorological data available for developing and validating a forecasting scheme, it is reasonable to use method 2.
3. Otherwise, it is reasonable to use method 3.

4. For any data volume available, it is reasonable to use method 4, if the forecasting equation is linear in its parameters.
5. We recommend that several verification methods be used if possible and analysis of results be performed.

2.3 Long-range hydrological forecast verification example

Consider using the above methods for long-range spring reservoir inflow forecast verification (case study of Sayano–Shushenskoe reservoir) [5]. Forecasts of mean April reservoir inflow volume 
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are issued on 26th March every year. Forecast lead time is 35 days. The following predictors 
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 are used: predicted value of mean reservoir inflow for the last 10-day period of March 
[image: image302.wmf]1

X

 = 
[image: image303.wmf]3

,

~

III

Q


[image: image304.wmf]/s

m

3

and April 1–10 mean air temperature forecast at Kyzyl weather station.
Long-term observation data over the period from 1979 to 2003 were used for that forecasting scheme development. Series length 
[image: image305.wmf]N

 is equal to 25. Predictors–predictand relationship is described by a linear regression model. Its three parameters, an absolute term and the two coefficients, were estimated using the least squares method. The strength of relationship is characterized by multiple correlation coefficient 
[image: image306.wmf]R

 = 0.76. Annual values of actual April reservoir inflow 
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, predicted inflow 
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 and forecast error 
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 are given in table 2.1 [5].

Table 2.1

Initial data for long-range forecasting of mean April inflow volume into Sayano–Shushenskoe reservoir and for forecast verification

	Year
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	1979
	400
	426
	-26

	1980
	410
	306
	104

	1981
	886
	791
	95

	1982
	1003
	670
	333

	1983
	394
	502
	-108

	1984
	420
	395
	25

	1985
	561
	565
	-4

	1986
	533
	595
	-62

	1987
	610
	649
	-39

	1988
	705
	549
	156

	1989
	660
	776
	-116

	1990
	460
	514
	-54

	1991
	520
	594
	-74

	1992
	630
	694
	-64

	1993
	800
	898
	-98

	1994
	698
	738
	-40

	1995
	835
	894
	-59

	1996
	490
	396
	94

	1997
	1360
	938
	422

	1998
	583
	723
	-140

	1999
	611
	666
	-55

	2000
	740
	773
	-33

	2001
	900
	808
	92

	2002
	587
	817
	-230

	2003
	504
	642
	-138


Methods presented in section 2.2 are used for verification of considered long-range hydrological forecast.

Example of using method 1.
Observation data over the following 2004-2009 years (
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 = 6 years) allow for estimating mean squared forecast error using formula (2.9): 
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Testing the validation forecast error series for autocorrelation showed the following. Defined by formula (2.7), autocorrelation coefficient estimate 
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 is equal to -0.12; therefore, the inequality (2.8) is true and there is no significant autocorrelation forecast errors, according to Anderson test, assuming 
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 = 0, which allows for using formulas (2.10) and (2.11).

According to those formulas, root mean squared errors 
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. Thus, in case of only 6-year independent validation forecast set, relative errors of estimating 
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Example of using method 2.
Observation data over 
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 = 20 years were used for estimating forecasting formula parameters, whereas the remaining 
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= 5 year observations were used as independent test set for estimating forecast error (
[image: image335.wmf]*

II

V

) using formula (2.12) for 
[image: image336.wmf]k

 = 3. The number of routine iterations of consequently excluding every 5-year sample from original 25-year observation data was 
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Final estimate of mean squared forecast error 
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, defined by formula (2.13), is equal to 24124 (c
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According to formulas (2.15) and (2.16), assuming 
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, respectively. Therefore, using method 2 allows for more accurate forecast error estimation: relative errors of estimating 
[image: image347.wmf]V

 and 
[image: image348.wmf]V

 are 28% and 14%, respectively.

Example of using method 3.
Leaving out every 
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- th year of 25-year observation period and returning the year excluded on previous step to training sample, forecasting formula parameters were estimated from the remaining 
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–1 = 24 years using least squares method and forecast error was computed as 
[image: image351.wmf])

(

i

Y

- 
[image: image352.wmf])

(

~

i

Y

, generating a forecast error series 
[image: image353.wmf]1

Y

–
[image: image354.wmf])

1

(

~

Y

, …, 
[image: image355.wmf]n

Y

–
[image: image356.wmf])

(

~

n

Y

.

A “leave-one-out” estimated mean squared forecast error 
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, defined by formula (2.14), is equal to 26922 (
[image: image358.wmf]/s

m

3

)2; root mean squared forecast error estimate is 
[image: image359.wmf]*

III

V

 = 164 
[image: image360.wmf]/s

m

3

.

According to formulas (2.15) and (2.16), assuming 
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, respectively. Therefore, relative errors of estimating 
[image: image366.wmf]V

 and 
[image: image367.wmf]V

 using method 3 are 34% and 16%, respectively.

Example of using method 4.

As the conditions for using method 4 are satisfied, the formulas (2.1) and (2.17), assuming 
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 = 0, were used for estimating residual variance of predictors–predictand relationship 
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According to formulas (2.18) and (2.19), root mean squared errors of those estimates are 
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. Thus, relative error of estimating 
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 using method 4 is 31% and 15%, respectively.

According to the above, a conclusion can be drawn that in case of long-range forecasting of April inflow into Sayano–Shushenskoe reservoir, identical forecast error estimates are derived using different verification methods [5].
2.4 Short-range hydrological forecast verification example
Consider using the above methods for short-range daily hydrologic forecast verification (case study of the Sochi River at Sochi, forecast lead time is 1 day). Conceptual snowmelt- and rainfall–runoff model was developed for forecasting. To feed that model, daily hydrometric and weather data observed at Sochi stream gauge and Sochi weather station are used, as well as weighted mean temperature and precipitation 1-day ahead forecasts derived from four available operational meteorological model outputs (COSMO-Ru 7, NCEP, REGION, and UKMO). For each month, using least squares method, 13 parameters of hydrological forecasting model were estimated from 18-year hydrometeorological observation data series over the period from 1984 to 2005 (accounting for observation gaps). Forecasts are issued once a day on daily basis; annual number of issued forecasts is therefore equal to 365-366. In respect of the number of days in a month, total monthly number 
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of daily observations varies from 508 to 558. Mean long-term total annual number of daily observations is 6506 [6].
As the above forecasting scheme has been operationally implemented fairly recently, there is still not enough data available for using verification method 1 (see section 2.2). Therefore, methods 2, 3 and 4 were used for estimating forecast error.

Example of using method 2.
Randomly choosing 
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 = 5 years 1984, 1990, 1998, 2000, and 2004 as ‘independent data’, initial 18-year observation data were cut to a 5-year validation set and 13-year training set. For each month, model parameters were estimated using that training sample and 5-year forecast error series was derived from test sample. 

Figure 2.2 shows daily actual vs. predicted flow (discharge) plots, which coincide fairly closely. 
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Figure 2.2. Daily discharge of the Sochi River at Sochi in the year 1984: actual (blue solid line) vs. forecast (red dashed line) 
For each month, forecast error was estimated using equation (2.12), where 
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 = 141 - 155. For each month and the whole year, the estimates 
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 are given in table 2.2, as well as the estimates of forecast error autocorrelation coefficient 
[image: image386.wmf]1

r

 defined by equation (2.7) from all available observation data. For 5% significance level, those estimates are statistically significant, if 
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In respect of the equation (2.11), relative root mean squared error of estimating 
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 is approximately equal to 6.4% for each month.
Example of using method 3

For 
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-th year were used for generating an independent set of forecast errors. For each month and the whole year, forecast error was estimated using equation (2.14). Estimates 
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Example of using method 4. 
As the conditions for using method 4 are satisfied, equations (2.1) and (2.17) were used for estimating forecast error for each month and for the whole year (see table 2.2, 
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). According to (2.19), relative root mean squared error of estimating 
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Table 2.2
Daily stream flow forecast error estimates, cubic meters per second (case study of the Sochi River at Sochi)
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	XI
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	0.10
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	12.3
	10.2
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	9.6
	16.3
	11.9
	10.2
	12.5
	9.6
	16.4
	15.7
	17.1
	12.7
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	11.4
	8.2
	11.1
	8.8
	17.2
	12.5
	9.7
	10.4
	9.8
	14.5
	16.1
	15.7
	12.1
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	10.4
	8.5
	10.7
	8.6
	14.8
	12.1
	9.2
	11.2
	8.8
	15.3
	14.5
	16.2
	12.0


As table 2.2 shows, for each month, identical forecast error estimates are derived using different verification methods. The features of hydrological regime, in particular, intramonthly flow variability, are well represented by monthly error distribution [5, 6].

According to the above examples, identical quite accurate short-range hydrological forecast error estimates can be derived using presented verification methods. As expected, method 2 appeared to be less accurate than methods 3 and 4, as the procedure of generating the training and validation samples was performed only once.

Chapter 3.  Comparison of methods and their applicability assessment

3.1 Comparison of hydrologic forecasting methods
In case when different methods may be used for forecasting the same hydrologic characteristic with the same lead time, there is a need to choose the most accurate methods. If an advanced modification of some previously used method is presented, its advantage must be substantiated. In all such cases, statistically significant difference between the estimated errors of hydrologic forecast methods must be determined [15, 27, 29, 40, 41, 42].

Consider using two concurrent methods for forecasting the same characteristic 
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 with the same lead time. The differences may be related with forecast models, meteorological data assimilation schemes, the set of predictors taken into account, the set of parameters, parameter estimation methods, or forecast relation graphs. Denote the forecasts of characteristic 
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 and to the same (or strongly correlated) predictors. The factors not taken into account, for instance, weather conditions over hydrological forecast lead time period [5], contribute considerably to forecast error correlation.
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(3.1)
According to Pitman test, there is statistically significant difference between estimated correlation coefficient and zero, if the following inequality is satisfied:


[image: image432.wmf]2

2

,

1

1

2

|

|

r

N

r

-

-



 EMBED Equation.3  [image: image433.wmf]³


[image: image434.wmf])

α/2

,

2

(

2

,

1

-

N

t

,





(3.2)

where 
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Table 3.1 Critical quintiles 
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If the inequality (3.2) is not satisfied, the difference between correlation coefficient estimate 
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 and zero may be considered negligibly small and that estimate should be admitted zero for further calculations.

Forecasting experience demonstrates that positive correlation coefficient estimate 
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 is virtually always statistically significant. Error correlation of forecasts using different schemes must be taken into account when comparing the estimates 
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Suppose method “1” to be more accurate, i.e., 
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Depending on the properties of each test forecast error series, we recommend three statistical tests be used for assessing statistical significance of method “1” advantage. When using these tests, the following fact must be taken account: if scheme errors were estimated using dependent sample, the number of estimated parameters (
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 for schemes “1” and “2”, respectively) must be taken into account. Otherwise, if forecasts errors were estimated using independent sample, the values 
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 must be replaced with zero for further calculations.

Test 1.

This test (criterion) is most powerful, i.e., the possibility of rejecting a false hypothesis is maximum, if the following conditions are satisfied:

1. The relationship between a forecasted characteristic and its predictors matches linear regression model considered in section 2.1 and forecasting methodology “1” is based on formula (2.4). 

2. Method “2” is a simplified modification of method “1” with less predictors, less summands in (2.4), or using some a priori parameters (for instance, their generalized values) instead of their estimates. Such simplification is equivalent to supposing that last 
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3. For both forecasting methods, parameters and forecast errors are estimated using the same long-term series of forecasted characteristic and its predictors, i.e., 
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4. Forecasting methods errors 
[image: image467.wmf]*

1

V

 and 
[image: image468.wmf]*

2

V

 are estimated using formulas (2.1) and (2.17) of method 4, where the number 
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Under such conditions, we recommend the most powerful analysis of variance F-test be used for comparing forecast error estimates 
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 should be considered statistically significant and scheme “1”, obviously more accurate, if the following condition is satisfied:
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Table 3.2 

Critical quintiles 
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Test 2.
This test, given in [23], is a modification of asymptotically most powerful Wald likelihood-ratio test [5, 20]. It can be used if the following conditions are satisfied:

1 Test forecasts of the same forecast time are used for testing both forecasting methods, i.e., 
[image: image501.wmf]1

N

 = 
[image: image502.wmf]2

N

= 
[image: image503.wmf]2

,

1

N

= 
[image: image504.wmf]N

.
2 For each forecasting method, test forecast error series is a random sample of normal probability distribution.

3 Forecast error estimates 
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For significance level 
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where 
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One should pay attention to the fact that the left part of inequality (3.4) increases with increasing value of coefficient 
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. This is indicative of the fact that in case of strongly correlated forecast errors of compared methods, even a slight advantage of one of forecasting method over another becomes statistically significant.
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Table 3.3
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Data given in table 3.3 show that minimal sufficient values 
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Test 3.
The presented statistical test is recommended for the use in the most general case of no limitations of test forecast error series properties. In this case, we recommend the multidimensional statistical analysis Mahalonobis distance based test ([22]) given in [5]. The errors 
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For significance level 
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Table 3.4

Minimal sufficient values of ratio 
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The values of ratio 
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 presented in table 3.4 are close to those given in table 3.3. They demonstrate that in case of virtually synchronous error fluctuations of compared forecasting schemes even a slight difference in their error estimates is indicative of statistically significant advantage of one of those methods.

3.2 Hydrologic forecasting methods comparison examples
1. Example of comparing long-term hydrological forecasting methods
Compare two methods (algorithms) of long-term forecasting of mean April inflow volume into Sayano–Shushenskoe reservoir (lead time is 35 days). Both are based on the same data for the period from 1979 to 2003.

Method 4 can be used for estimating the forecast errors of algorithm “1” with 2 predictors and 3 estimated parameters of linear forecasting formula (see section 2.3). Estimate of mean squared forecast error 
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Algorithm “2” is a simplification of algorihm “1” rejecting the second predictor, mean 10-day air temperature forecast for 1-st 10-day period of April 
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ºC for Kyzyl weather station. Thus, algorithm 2” has only one predictor and 2-parametric linear forecasting formula. As for algorithm “1”, method 4 can be used for forecast error estimating. Mean squared forecast error 
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According to formulas (2.18) and (2.19), method 4 allows estimating the values 
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 for both schemes; relative error is 31% and 15%, respectively.

Defined by formula (3.1), forecast errors correlation coefficient estimate 
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 is equal to 0.86, whereas the inequality (3.2) is true for any feasible significance level 
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. There is therefore statistically significant correlation between errors of forecasts “1” and “2” for the same years, according to Pitman test.

Concerning specific features of the forecasting algorithms, with 
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 estimates taken into account, the above statistical tests are used for comparing both forecasting methods.

Using test 1.

The linear forecasting formula of algorithm “1” and rejecting of second predictor in algorithm “2” allow for using the most powerful test 1. The number of parameters for the first scheme is 
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Defined by formula (3.3), test measure 
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 is equal to 3.27. For standard significance level 
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 = 5 %, its critical value 
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 is equal to 4.35. For such significance level, the inequality (3.3) is not true and, according to test 1, there is no statistically significant advantage of algorithm “1” over algorithm “2”. For 
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 is equal to 2.95, the inequality (3.3) is true and the advantage of forecasting algorithm “1” over algorithm “2” is considered statistically significant.

In this case, we cannot come to a straightforward conclusion that forecasting algorithm “1” is more accurate than algorithm “2” and that therefore rejecting the second predictor (above mentioned mean 10-day air temperature forecast) in order to develop a simplified algorithm “2” is unreasonable.

Using test 2.

In case of using a more generalized test 2, test measure 
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 defined by formula (3.4) is equal to 0.66. Even for a high significance level 
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=2.71 and therefore the inequality (3.4) is not true. According to test 2, there is no statistically significant advantage of algorithm “1” over algorithm “2”.

Using test 3.

In case of using the most generalized test 3, test measure 
[image: image605.wmf]M

 defined by formula (3.5) is equal to 0.74. Even for a high significance level 
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=1.645 and the inequality (3.5) is not true. According to test 3, there is no statistically significant advantage of algorithm y “1” over algorithm “2”.

Thus, in case of long-term forecasting of mean April inflow volume into Sayano–Shushenskoe reservoir, using mean 10-day air temperature forecast for the first 10-day period of April for Kyzyl weather station
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 ºC as second predictor does not result in statistically significant forecast accuracy improvement [5].

2. Example of comparing short-range hydrological forecasting methods
Compare two methods (algorithms) of short-range stream flow forecasting for the Sochi River at Sochi (lead time is 1 day). Both were developed using the same hydrometeorological observation data for the period from 1984 to 2005 accounting for observation gaps (series length 
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 = 18 years). Total monthly number of daily observations varies from 508 to 558. For the whole year, mean long-term total number of daily observations is equal to 6506.

As for forecasting algorithm “1” presented in section 2.4, its forecasting formula has 13 parameters estimated for each month using least squares method.

As for forecasting algorithm “2” based on the same conceptual snowmelt- and rainfall-runoff model and using the same hydrometeorological data, its forecasting formula is simplified and has only 
[image: image611.wmf]2

k
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Concerning specific features of the forecasting algorithms, with 
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 estimates taken into account, the above statistical tests are used for comparing both forecasting methods.

Using test 1.

The most powerful test 1 can be used for comparing the above algorithms. The formulas (2.1) and (2.17) of method 4 considered in section 2.2 were used for computing the error estimates 
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 of forecast error values with 1-day time lag for algorithms “1” and “2” respectively, defined by formula (2.7). The values of 
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 = 6, are presented in table 3.5. 

Table 3.5 

Stream flow forecasting algorithms comparison results using test 1 (case study of Sochi River flow forecasting at Sochi)
	
	I
	II
	III
	IV
	V
	VI
	VII
	VIII
	IX
	X
	XI
	XII
	year
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	1.88
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	6.12
	4.67
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 is equal to 2.10. According to the data given in table 3.5, for the whole year and for all months except for June and July, the inequality (3.3) is true and there is statistically significant accuracy advantage of algorithm “1” over algorithm “2”.

Using test 2.

The same error estimates 
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 were considered when using more generalized test 2.  Correlation coefficient 
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 of forecast “1” and forecast “2” errors for the same days was estimated using formula (3.1) for each month and for the whole year (see table 3.6). The values of test measure 
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 defined by formula (3.4) are also given in table 3.6.

Table 3.6 

Stream flow forecasting algorithms comparison results using test 2 (case study of Sochi River flow forecasting at Sochi)
	
	I
	II
	III
	IV
	V
	VI
	VII
	VIII
	IX
	X
	XI
	XII
	year
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For significance level 
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= 3.84. According to the data given in table 3.6, for the whole year and for all months except for June, July, and September, the inequality (3.4) is true and there is statistically significant accuracy advantage of algorithm “1” over algorithm “2”.

Using test 3.

The same error estimates 
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 of forecast error values with 1-day time lag for schemes “1” and “2” respectively, defined by formula (2.7), were taken into account as well. Root mean squared errors 
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Table 3.7 

Stream flow forecasting algorithms comparison results using test 3 (case study of Sochi River flow forecasting at Sochi)
	
	I
	II
	III
	IV
	V
	VI
	VII
	VIII
	IX
	X
	XI
	XII
	year
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For significance level 
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 = 1.64. According to the data given in table 3.7, for the whole year and for all months except for June, July, and September, the inequality (3.5) is true and there is statistically significant accuracy advantage of algorithm “1” over algorithm “2”. For the Sochi River, flood frequency is quite low in the period from July to September following the period of relatively low spring flood. Therefore, the impact of using simplified forecasting algorithm  “2” is minimal [6]. 
Thus, the results of using the above three tests allow to make the same conclusion that for the whole year and for almost all months, there is statistically significant accuracy advantage of forecasting algorithm “1” over algorithm “2” [5, 6].
3.3 Forecast applicability assessment
As mentioned in chapter 1, climatology forecasting method (“climatology”), as well as inertial (persistence) forecast, may be used as unconditional alternative of some hydrological forecasting method. If the latter is obviously more accurate than unconditional alternative forecast, the studied method has proved to be used in hydrological forecasting practice [5].

Climatology method is used as unconditional alternative of long-range and some medium-range hydrological forecasting techniques, as well as of occurrence dates forecasting of events characterizing the hydrological regime of a water body.

The forecast of some hydrologic characteristic 
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The “climatology” forecast error is compared to the error of forecast produced using the evaluated method. That error is usually characterized by an index 
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 defined by formula (2.1). That measure is an approximate estimate of residual variance related to the variance of forecasted value and correlation ratio 
[image: image684.wmf]R

 (see formula (2.2)) [18]. Squared 
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where 
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 is observed actual value of forecasted hydrologic characteristic and 
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-year forecast produced using the evaluated scheme. The number of forecasting formula parameters is denoted by 
[image: image691.wmf]k

.
The above index 
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, defined by formula (3.7), is a correction of Nash-Sutcliffe efficiency index widely used in a number of countries for assessing the hydrological forecast efficiency [5, 30, 38].
In a number of countries, the ratio 
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The index 
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, defined by formula (3.6), is underestimating the “climatology” error. Also, this estimate does not take into account the possible autocorrelation of 
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Anderson test, described in section 2.1, is recommended for determining the statistical significance of estimate 
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According to [5, 21, 24], approximate unbiased estimate of “climatology” error is defined by the following formula:
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Its root mean squared error is defined as follows:
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When comparing evaluated hydrological forecasting method (“M”) and “climatology” (“C”), the correlation coefficient between synchronous “M” and “C” forecast errors must be taken into account. It is estimated as follows:
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where 
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 is the correlation ratio estimate defined by formula (3.7).
Inertial forecast is the unconditional alternative of short-range and some medium-range hydrological forecasting methods. For 
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where 
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, providing the absence of systematic error, is mean variation of forecasted hydrologic characteristic over the lead time period. That value is the arithmetic mean of the series 
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In a number of countries, the ratio 
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 is used for assessing the applicability of hydrological forecasting method (see the above described criteria for using ratio 
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According to [5, 21, 24], approximate unbiased estimate 
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Approximate value of its root mean squared error is defined as follows:
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In some cases of medium-range hydrological forecasting, a problem of choosing an unconditional forecasting alternative may arise. The choice of “climatology” or inertial forecast is driven by the 
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 and 
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if 
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 and “climatology” is therefore recommended as unconditional alternative of evaluated forecasting scheme [5, 18].

Applicability assessment of a hydrological forecast is based on comparing its  error with that of unconditional alternative forecast. One of the methods described in section (2.2) should be used to get the error estimate 
[image: image771.wmf]*

V

 of forecast depending on the volume and quality of available data.
In case of choosing “climatology” as alternative, we need to compare 
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, we recommend the statistical tests presented in section 3.1 be used for testing the statistical significance of accuracy advantage of evaluated method over “climatology”.
In case of choosing inertial forecast as alternative, we need to compare 
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, we recommend the above mentioned tests be used for testing the statistical significance of accuracy advantage of evaluated method over inertial forecast.
3.4 Forecast applicability assessment examples
1. Example of evaluating the applicability of a long-range hydrological forecast 
Applicability evaluation of 35-days lead time forecasting method of mean April inflow volume into the Sayano–Shushenskoe reservoir, presented in section 2.3, is considered as the first example of forecast applicability assessment. Hydrometeorological data over the period from 1979 to 2003 were used for developing that forecasting method. A 3-parametric linear  formula defines the relationship between the forecasted inflow and its two predictors. Defined by formulas (2.1) and (2.17), mean squared forecast error 
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Climatology method, using mean long-term value of mean April reservoir inflow volume 
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, averaged over 25-year observation period, is used as unconditional forecast alternative. Standard “climatology” error 
[image: image785.wmf]s

 defined by formula (3.6) is equal to 223 
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. There is no autocorrelation between “climatology”-forecasted 1-year lagged inflow values, as that autocorrelation coefficient estimate 
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)2. According to formula (3.10), its relative estimation error is equal to 29%.

There is an unambiguous relationship between the correlation coefficient 
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 of annual “method” and “climatology” forecast errors and multiple correlation coefficient 
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 = 0.65. 
Standard efficiency index of forecasting method is 
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 = 0.68, as to which the studied long-term reservoir inflow forecasting method can be considered satisfactory.
Using test 1.
Due to linear forecasting formula, the first of the above statistical tests is the most effective for assessing the applicability of forecasting method. Defined by formula (3.3) for  
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 = 3.44; inequality (3.3) is true, 
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 and thus the evaluated forecasting method should be used for long-term reservoir inflow forecasting instead of “climatology”.
Using test 2. 
In case of using a more generalized and therefore less powerful statistical test 2, its index 
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, defined by formula (3.4), is equal to 4.69. For a standard significance level 
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 = 3.84; inequality (3.3) is true and the evaluated forecasting method is therefore better than “climatology”.
Using test 3.
In case of using the most generalized and therefore the least powerful statistical test 3, its index 
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, defined by formula (3.5), is equal to 2.26. For a standard significance level 
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 = 1.64; therefore, inequality (3.5) is true and the evaluated forecasting method should be considered efficient and significantly more accurate than “climatology”.
Thus, in accordance with all three statistical tests, applicability of considered long-term reservoir inflow forecasting method has proved, as it is significantly more accurate than   climatology method [5].

2. Example of evaluating the applicability of a short-range hydrological forecast
Applicability evaluation of one-day lead time stream flow forecasting method for the Sochi River at Sochi, presented in section 2.4, is considered as the second example of forecast applicability assessment. Conceptual snowmelt- and rainfall-runoff model is used for forecasting; the model parameters were estimated using hydrometeorological observation data over the period from 1984 to 2005. For each month and for the whole year, the errors of that forecast, produced using different methods, are presented in table 2.1. Error estimates defined by formulas (2.1) and (2.17) of method 4 are considered in this example.

One-day lead time inertial forecast defined by formula (3.12) for 
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 = 1 is used as unconditional forecast alternative. For each month and for the whole year, the table 3.8 presents the values of 
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defined by formula (3.14).
Table 3.8

Characteristics of daily stream flow forecast errors for the Sochi River at Sochi
	
	I
	II
	III
	IV
	V
	VI
	VII
	VIII
	IX
	X
	XI
	XII
	year
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	0.0
	-0.2
	0.0
	-0.1
	0.1
	-0.4
	-0.3
	0.1
	-0.1
	0.6
	-0.3
	0.3
	0.00
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	15.1
	12.7
	16.5
	12.0
	19.6
	12.2
	10.0
	11.8
	10.8
	21.0
	21.4
	22.6
	15.5
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	-0.12
	-0.14
	-0.08
	-0.02
	-0.08
	0.06
	-0.13
	-0.15
	0.01
	-0.10
	-0.14
	-0.16
	-0.09
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	17.9
	13.7
	19.5
	13.7
	26.4
	16.1
	12.8
	15.1
	13.8
	23.9
	25.4
	25.3
	18.6


For each month and for the whole year, table 3.9 presents the following data: traditionally used ratio of 
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, the ratio of evaluated forecast errors to inertial forecast errors 
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, and the coefficient 
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 of correlation between same-day evaluated forecast errors and inertial forecast errors.
There is considerable difference between the evaluated forecast error probability distribution and normal probability distribution, as well as between the inertial forecast probability distribution and normal probability distribution. In respect of the above, the most generalized test 3 was used for assessing the efficiency of considered forecasting scheme. The values of that test index 
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, defined by formula (3.5), are presented in table 3.9. For each month and for the whole year, those values are large enough for the inequality (3.5) to be true for any feasible significance level 
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Table 3.9

Applicability characteristics of short-range daily stream flow forecast for the Sochi River at Sochi 

	
	I
	II
	III
	IV
	V
	VI
	VII
	VIII
	IX
	X
	XI
	XII
	year
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	0.62
	0.60
	0.58
	0.61
	0.65
	0.72
	0.63
	0.66
	0.64
	0.58
	0.57
	0.63
	0.62
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	0.58
	0.62
	0.55
	0.63
	0.56
	0.75
	0.72
	0.74
	0.64
	0.64
	0.57
	0.64
	0.65
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	0.36
	0.50
	0.33
	0.44
	0.29
	0.49
	0.40
	0.45
	0.30
	0.41
	0.41
	0.50
	0.41
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	10.9
	10.0
	11.2
	9.9
	11.2
	7.0
	7.7
	7.0
	9.3
	9.7
	11.1
	10.0
	32.7


Thus, the considered method of 1-day lead time daily stream flow forecasting for the Sochi River at Sochi may be considered efficient for each month and for the whole year [5, 6].
Chapter 4.  Estimation of admissible forecast error probability

4.1 Admissible forecast error probability estimation rules
The main measure of hydrological forecast error, considered in previous chapters, is the mean squared forecast error 
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 defined by formula (1.1). The probability of admissible forecast errors is a useful complement to that quality measure [5, 18].

Denote studied hydrologic characteristic by 
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Thus, the measures 
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 define the confidence interval for an expected hydrologic characteristic value 
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 constructed using the studied method.  Estimating probability 
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Taking section 1.2 into account, it is obvious that it would be the best to define the value 
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 in coordination with forecast users. A formal approach to defining 
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 is also possible. The following procedures are used in hydrological forecasting in a number of nations.

1. Climatic forecast is used as unconditional alternative for studied method. It is expressed as the norm 
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 defined by formula (3.6) is the characteristic of climatic forecast error. In this case, admissible limiting value of forecast error is defined as 
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2. Inertial forecast 
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 is used as unconditional alternative for studied method. It is defined by formula (3.12). The measure 
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 defined by formula (3.13) is the characteristic of inertial forecast error. In this case, admissible limiting value of forecast error is defined as  
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Such definition of admissible forecast error is due to the fact that, given normal probability distribution of alternative forecast error 
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If forecast errors obtained using the assessed method also have normal probability distribution, then, given 
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 between root mean square errors of the studied method and of alternative forecast. The relationship between presented measures is given in table 4.1 [5, 18].

Table 4.1

Probability 
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In case of quite long series of test forecast errors, the ratio 
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 of admissible forecast errors greater than or equal to 60% [5, 18]. In the above simple case of normal probability distribution, the probability of admissible forecast errors might be considered an additional applicability measure of studied scheme.
Actually, probability distribution of alternative (climatic and inertial) forecast might considerably differ from normal distribution (see next section). In this case, the probability 
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 (the coefficient of excess). For normal probability distribution, both those values are equal to zero. The contribution of kurtosis to that probability deviation is especially large, as kurtosis is a characteristic of occurrence probability of extremely large absolute forecast errors, given the same variance of distribution. In case of large negative values of kurtosis 
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For any probability distribution of both forecasts errors, the relationship between probability values 
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When describing statistical properties of frequency 
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In case of no correlation between test forecast error series members, there is also no correlation between admissible error index series members. The frequency 
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In case of very strong correlation between test forecast error series members, the frequency 
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According to [5], root mean squared error of frequency 
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A similar formula is used for estimating the probability 
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[image: image929.wmf]A

Y

~

 (
[image: image930.wmf]A

Y

~

=
[image: image931.wmf]C

Y

~

 or 
[image: image932.wmf]A

Y

~

=
[image: image933.wmf]I

Y

~

 in case of climatic and inertial forecast, respectively), the 
[image: image934.wmf]N

 test forecast error series 
[image: image935.wmf]1

,

1

~

A

Y

Y

-

,..., 
[image: image936.wmf]N

A

N

Y

Y

,

~

-

 may be used for estimating admissible alternative forest error probability 
[image: image937.wmf]A

P

. We recommend relative frequency 
[image: image938.wmf]*

A

P

 of admissible forecasts be used as estimate of 
[image: image939.wmf]A

P

: 
[image: image940.wmf]*

A

P

 is defined as the number of cases when inequality 
[image: image941.wmf]*

,

i

A

i

Y

Y

-


[image: image942.wmf]A

d

£

 is satisfied, normalized by 
[image: image943.wmf]N

.

We also recommend the measure 
[image: image944.wmf])

1

(

*

A

P

 be used as characteristic of alternative forecast error series autocorrelation impact on statistical properties of frequency 
[image: image945.wmf]*

A

P

: 
[image: image946.wmf])

1

(

*

A

P

 is the frequency of adjacent forecasts simultaneously lying within admissible intervals, i.e., inequalities 
[image: image947.wmf]£

-

)

(

~

)

(

,

t

Y

t

Y

i

A

i


[image: image948.wmf]A

d

 and 
[image: image949.wmf]£

+

-

+

)

1

(

~

)

1

(

,

t

Y

t

Y

i

A

i


[image: image950.wmf]A

d

 are simultaneously satisfied. 

The coefficient estimate 
[image: image951.wmf])

1

(

A

r

 of correlation between adjacent members of admissible inertial forecast error index series is defined by formula (4.2), where frequency values 
[image: image952.wmf]*

М

P

 and 
[image: image953.wmf])

1

(

*

М

P

 must be replaced by values 
[image: image954.wmf]*

A

P

 and 
[image: image955.wmf])

1

(

*

A

P

.
According to [5], root mean squared error 
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Statistical significance test of inequality 
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The correlation between errors of examined and alternative forecast must be taken into account when comparing the frequency estimates 
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1. The initial observation series has some extremely high or extremely low value with extremely large positive or negative forecast error, respectively. Alternative forecast error will be very likely the same. As a result, both forecast error values are beyond admissible limits 
[image: image968.wmf]A

d

 and both frequency values 
[image: image969.wmf]*

М

P

 and 
[image: image970.wmf]*

A

P

 are underestimated.
2. The initial observation series has too many values close to norm. Forecast errors are very likely to lie within admissible limits and both frequency values 
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In case of no correlation between scheme and alternative forecast errors, there is also no correlation between 
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where 
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4.2 Admissible forecast error probability estimation examples

First of all, consider two theoretical examples of using that criterion in case of no autocorrelation of both forecast error series and admissible inertial forecast error frequency 
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 equal to 50 %.

Example 1.

Suppose there is no correlation between forecasting method and alternative forecast errors when correlation coefficient 
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Table 4.2

Minimal sufficient frequency values 
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Example 2.

Suppose forecasting method and alternative forecast errors are fully correlated when 
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Table 4.3
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Comparison of data given in tables 4.2 and 4.3 shows, that even slight benefit of one algorithm becomes statistically significant with increasing forecast error correlation.

Example 3.

Consider the admissible error probability assessment of long-term reservoir April inflow forecast for Sayano–Shushenskoe reservoir (lead time is 35 days); the forecasting method is presented in section 2.3. Climatic forecast with error measure 
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Series of studied long-term forecasting method errors and of alternative forecast errors were used for estimating admissible forecast error probability (series length 
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 = 25). For both series, there is no statistically significant autocorrelation. Admissible error frequency of long-term forecast 
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According to probability distribution analysis of forecasted value 
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 = 3. According to statistical analysis results of long-term test forecast error series presented in section 6.1, 
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When testing the statistical significance of inequality 
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Example 4.

Consider the admissible error probability assessment of 1-day lead time flow forecast for the Sochi River at Sochi (see section 2.3), compared to alternative inertial forecast; admissible forecast error 
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 is defined as 0,674
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.

Series of test forecast errors (series length 
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 = 508–558) and of analogous inertial forecast errors were used for estimating admissible forecast error probability. According to statistical analysis results of those series presented in section 6.2, empirical probability distribution does not match normal probability distribution. Main difference is distribution “tails” due to anomalous high frequency of extremely large positive and negative forecast errors, indicative of high kurtosis values.
For each month of the year, the number of test forecasts 
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Table 4.4

Applicability characteristics of flow forecasting methodology for the Sochi River at Sochi
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The data presented in table 4.4 demonstrate that all values of measure 
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Chapter 5.  Probabilistic hydrological forecast

5.1 Probabilistic forecasting methods

The reasons defining the discrepancy between deterministic forecast 
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 and its observed value 
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 were considered in chapter 1. Hydrologic forecast users must consider probable discrepancies between expected hydrological characteristic and its forecast. Due to stochastic nature of hydrological processes and possibilities of their forecasting, the deterministic forecast of values of hydrologic characteristics must be completed by forecast of probability distribution of those expected values (probabilistic forecast) [5, 17, 28, 32, 37].

Probabilistic forecasting implies the estimation of conditional probability distribution 
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can be given as formulas, graphs, or tables. In some cases, additional probabilistic forecast forms are needed.

Additional probabilistic forecast form 1

With hydrometeorological data available on forecast issue date taken into account, conditional probability 
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In case of high values of a hydrologic characteristic 
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Additional probabilistic forecast form 2

With hydrometeorological data available on forecast issue date taken into account, conditional confidence interval 
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In case of high values of a hydrologic characteristic 
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So, probabilistic hydrological forecast can be completed by estimation of admissible forecast error probability, as well as the probability that expected runoff characteristic lies in a corresponding interval. Such probability estimation is considered in chapter 4.
Desired functions 
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Traditional hydrological probabilistic forecasting approach is based on the above conclusion [5, 18].

In the recent years, another approach, based on different modifications of dynamic-stochastic hydrological modelling method, has been developed [8, 17, 25, 31]. 

Forecast factors can be divided in two categories. Hydrometeorological factors which characteristics are available on the forecast issue date belong to the first category. Those characteristics are components of vector 
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If hydrological forecast lead time is short enough for satisfactory weather forecast 
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Otherwise, scenario ensemble of weather element forecasts over the hydrological forecast lead time period is used. That ensemble is expressed as the series 
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That series may be generated using weather observation data either over the same long-term period (
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A weather generator, based on a meteorological model taking into account observed and projected climate change, may be used for generating scenario ensemble of weather element forecasts over the hydrological forecast lead time period. In this case, it is important to remember that developing and running such a model may be substantially more difficult than considered task of hydrological forecasting.

Such use of dynamic-stochastic modelling method is proved only for the case when hydrological forecast error is fully determined by uncertainty of weather element forecasts over the hydrological forecast lead time period. The above is possible, if weather conditions are of great importance during the period of hydrological forecast lead time and weather forecast error is large and the model used for hydrological forecasting is fully taking into account all other predictors, so that the function 
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As the above is a rare condition, probabilistic forecasting based on statistical analysis of test forecasts is considered below. Such an approach is equivalent to supposing that all hydrometeorological data used for producing a hydrological forecast is represented in its deterministic form.
Probabilistic forecasting implies the estimation of functions 
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As a rule, such hydrological forecasting method is developed that deterministic forecasts have no systematic errors. In some cases, forecast correction is used for this purpose [5]. Thus, the mathematical expectation of forecast error 
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In such cases, probabilistic forecasting might be largely hindered by using forecast error 
[image: image1212.wmf]Y

Y

~

-

. Thus, there is another measure 
[image: image1213.wmf])

~

,

(

Y

Y

d

 of discrepancy between observed and forecast values 
[image: image1214.wmf]Y

 and 
[image: image1215.wmf]Y

~

, recommended for using instead of that error 
[image: image1216.wmf]Y

Y

~

-

. That recommended measure 
[image: image1217.wmf])

~

,

(

Y

Y

d

 should satisfy the following requirements:

1) random fluctuations of forecast error 
[image: image1218.wmf])

~

,

(

Y

Y

d

 are independent of forecast value 
[image: image1219.wmf]Y

~

 and always have zero mean and same variance 
[image: image1220.wmf]d

V

;

2) the measure 
[image: image1221.wmf])

~

,

(

Y

Y

d

 has normal probability distribution (or any other quite simple probability distribution) for any forecast value 
[image: image1222.wmf]Y

~

.

Suggested hydrologic probabilistic forecasting algorithm implies the following stages:
1. Choosing forecast error measure 
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 satisfying the above requirements.

2. Testing whether those requirements are met using statistical criteria presented in next section.

3.
Statistical estimation of probability distribution of that measure based on the series 
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4.
Defining desired function 
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Three easiest and the best operational hydrological forecasting methods are presented below [5, 18].

Method 1
Trivial forecast error 
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Suppose that forecast error 
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Methods presented in section 2.2 are used to obtain the variance estimate 
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Here, 
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and 
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 is its frequency curve. Both functions are defined using available computer programmes or tables presented in numerous papers on probability theory [20, 21, 35, 39].

Method 2
Relative forecast error 
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To use the methods presented in section 2.2 for computing the variance estimate 
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Method 3

Hydrologic characteristic logarithm forecast error 
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In some individual cases, some other forecast error measures 
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5.2 Probabilistic forecast verification

The same test forecast – based series 
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1. First of all, significance test for autocorrelation of series 
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Correlation coefficient is statistically significant, if the following inequality is satisfied:
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If the inequality (5.9) is satisfied, then preliminary exclusion of adjacent forecast values is recommended in order to eliminate the correlation between series 
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, leaving either odd or even numbers. As a result, two truncated series are generated. Using Anderson test, statistical significance of correlation is tested. If there is no statistically significant correlation, both truncated series must be used for further verification. If the inequality (5.9) is satisfied for those series, further series truncation might be performed, leaving only 1st, 4th, 7th , … members or 2nd, 5th, 8th members, or 3rd, 6th,9th …members, etc. Then, a test for the requirements satisfaction (see precious section) for the used forecast error measure must be carried out.
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Where 
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where 
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3. Standard goodness-of-fit tests should be used for testing the supposed normal probability distribution of the series 
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Pearson goodness-of-fit test is recommended for use [5]. The following preliminary procedures are needed: 
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where 
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In case of quite long series (
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where 
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For each additional probabilistic forecast form, probability distribution must be tested with regard to specific features of that forecast form.
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We recommend the test revising Brier score widely used in probabilistic weather forecasting and based on an asymptotically most powerful Wald likelihood-ratio test [5, 7, 8, 20] be used for testing the correspondence between probability values 
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where 
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The additional form 2 implies the estimation of an interval 
[image: image1420.wmf])

~

;

~

(

P

P

b

a

, such that an expected hydrologic characteristic 
[image: image1421.wmf]Y

 lies within that interval with a given probability 
[image: image1422.wmf]P

, knowing the forecast 
[image: image1423.wmf]Y

~

 of that characteristic. Knowing the conditional frequency curve estimate obtained using above described methods, the estimates of that interval limits are defined as 
[image: image1424.wmf])

(

~

1

*

p

Y

 and 
[image: image1425.wmf])

(

~

2

*

p

Y

, where 
[image: image1426.wmf]2

1

p

p

-

=
[image: image1427.wmf]P

. 
For each member of test forecast series 
[image: image1428.wmf])

~

,

(

i

i

Y

Y

, conditional frequency curve estimate 
[image: image1429.wmf])

(

~

*

p

Y

 depends on forecast value 
[image: image1430.wmf]i

Y

~

. It is therefore reasonable to denote interval limit estimates as 
[image: image1431.wmf])

(

~

1

*

p

Y

i

 and 
[image: image1432.wmf])

(

~

2

*

p

Y

i

. We recommend the following statistical test be used for testing probabilistic forecast form 2.

Relative frequency 
[image: image1433.wmf]*

P

 of observed values 
[image: image1434.wmf]i

Y

 lying within an interval (
[image: image1435.wmf])

(

~

1

*

p

Y

i

,
[image: image1436.wmf])

(

~

2

*

p

Y

i

) should be defined based on test forecast series.

For frequency 
[image: image1437.wmf]*

P

, a confidence interval with such limits 
[image: image1438.wmf])

α

(

*

1

P

 and 
[image: image1439.wmf])

α

(

*

2

P

 is constructed that the probability that 
[image: image1440.wmf]*

P

 lies within that interval is equal to 1–
[image: image1441.wmf]α

. For any 
[image: image1442.wmf]P

, 
[image: image1443.wmf]N

, and 
[image: image1444.wmf]α

, upper and lower confidence limits 
[image: image1445.wmf])

α

(

*

1

P

 and 
[image: image1446.wmf])

α

(

*

2

P

 are defined using available computer programmes or tables presented in [5, 20, 35,39]. The values of 
[image: image1447.wmf])

α

(

*

1

P

 and 
[image: image1448.wmf])

α

(

*

2

P

 for 
[image: image1449.wmf]α

 = 5 % and different 
[image: image1450.wmf]P

 and 
[image: image1451.wmf]N

 are given in table 5.4.
Table 5.4

Confidence limits (
[image: image1452.wmf]α

 = 5 %) for frequency 
[image: image1453.wmf]*

P

 

	
[image: image1454.wmf]P


	0.05
	0.10
	0.25
	0.50
	0.75
	0.90
	0.95

	
[image: image1455.wmf]N

 = 20

	
[image: image1456.wmf]%)

5

(

*

1

P


	0.003
	0.018
	0.071
	0.302
	0.599
	0.717
	0.784

	
[image: image1457.wmf]%)

5

(

*

2

P


	0.216
	0.283
	0.401
	0.698
	0.929
	0.982
	0.997

	
[image: image1458.wmf]N

 = 40

	
[image: image1459.wmf]%)

5

(

*

1

P


	0.009
	0.036
	0.142
	0.361
	0.613
	0.720
	0.857

	
[image: image1460.wmf]%)

5

(

*

2

P


	0.143
	0.220
	0.387
	0.639
	0.858
	0.964
	0.991

	
[image: image1461.wmf]N

 = 60

	
[image: image1462.wmf]%)

5

(

*

1

P


	0.013
	0.044
	0.161
	0.387
	0.642
	0.813
	0.882

	
[image: image1463.wmf]%)

5

(

*

2

P


	0.118
	0.187
	0.358
	0.613
	0.839
	0.956
	0.987


For significance level equals to 
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 , the probabilistic forecast form 2 test should be considered successful, if the following inequality is satisfied:
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As well as for deterministic forecasting method, probabilistic forecasting method applicability assessment is based on comparing such forecast results with alternative climatic or inertial forecasts. So, alternative probabilistic forecasts must be constructed using the methods described in the previous section.

If the relation between probabilistic and test forecast series is closer than that between alternative and test series, the examined forecast methodology should be considered applicable for probabilistic forecasting.

As demonstrated in [5], statistical procedures of such comparison are quite time-consuming. However, probabilistic forecast applicability assessment can be substantially simplified using deterministic forecast applicability criteria presented in section 3.3, with allowance for specific features of each method.

1. In case of using method 1, forecast error estimates 
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2. In case of using method 2, the estimate 
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3. In case of using method 3, hydrologic parameter logarithm forecast error estimate 
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If a forecasting method presented in previous section can be applied for deterministic forecasting, it is also applicable for probabilistic forecasting.
Chapter 6.  Probabilistic forecast examples

6.1 Long-range probabilistic forecast example

Forecast of mean April inflow volumes into Sayano–Shushenskoe reservoir (lead time is 35 days) is presented as the example of long-term probabilistic forecasting method (see sections 2.3, 3.2, 3.4, and 4.2). An empirical formula is used for reservoir inflow 
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 forecasting; predictors are: inflow volume averaged over the last 10 days of March and forecast of mean air temperature over the first 10 days of April for Kyzyl weather station. The parameters of the formula were estimated using the least squares method; series length of forecast value and its predictors is 
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 for methods 1, 2, and 3, respectively. Anderson test showed no statistically significant autocorrelation for series 
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  for any method of calculating forecast errors. Method 1 applicability test showed the following. 
1. Correlation coefficient estimate between squared forecast errors 
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values calculated using formula (5.10) is 0,39. While 
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 = 5 %, the inequality (5.11) is not satisfied for any month and the correlation is statistically significant according to Pitman criterion. Thus, conditional expected value of squared forecast error increases with increasing forecast value
2. With series length 
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= 25 taken into account, Pearson goodness-of-fit test was used for testing the hypothesis that forecast errors are normally distributed, with zero mean and standard deviation estimate 
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=12.21 is equal to 11.07. Thus, the inequality (5.12) is not satisfied and method 1 normal probability distribution hypothesis must be rejected. Thus, method 1 is rejected due to the fact that its applicability conditions are not satisfied.

Method 2 applicability test showed the following.

1. Correlation coefficient estimate between squared relative forecast errors 
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 = 5 % the inequality (5.11) is satisfied. Thus, according to Pitman criterion, this correlation is not statistically significant. Thus, relative forecast error variance is independent of forecast value.

2. Pearson goodness-of-fit test was used for testing the hypothesis that forecast errors are normally distributed, with zero mean and standard deviation estimate 
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Thus, the method 2 applicability conditions are satisfied and this method can be used for long-range probabilistic forecasting of April inflow volume into Sayano–Shushenskoe reservoir.
Conditional probability distribution function and conditional frequency curve of mean April inflow volume into Sayano–Shushenskoe reservoir, 
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Conditional frequency curve of mean April inflow volume into Sayano–Shushenskoe reservoir
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Table 6.2

Probabilistic reservoir inflow forecast characteristics (Sayano–Shushenskoe reservoir), additional forms 1 and 2
	Год
	
[image: image1539.wmf]P

~


	
[image: image1540.wmf]I


	
[image: image1541.wmf]P

a

~


	
[image: image1542.wmf]P

b

~



	1979
	0,23
	0
	372
	487

	1980
	0,01
	0
	267
	350

	1981
	0,43
	0
	691
	905

	1982
	0,69
	0
	586
	767

	1983
	0,52
	0
	439
	574

	1984
	0,14
	0
	345
	452

	1985
	0,69
	1
	494
	647

	1986
	0,73
	1
	520
	681

	1987
	0,71
	1
	567
	743

	1988
	0,66
	1
	480
	628

	1989
	0,46
	1
	678
	888

	1990
	0,56
	0
	449
	588

	1991
	0,73
	1
	519
	680

	1992
	0,65
	1
	606
	794

	1993
	0,21
	0
	785
	1028

	1994
	0,55
	1
	645
	844

	1995
	0,22
	0
	781
	1023

	1996
	0,14
	0
	346
	453

	1997
	0,15
	0
	820
	1073

	1998
	0,59
	1
	632
	827

	1999
	0,69
	1
	582
	762

	2000
	0,47
	1
	676
	885

	2001
	0,39
	0
	706
	925

	2002
	0,37
	1
	714
	935

	2003
	0,72
	1
	561
	735


A measure 
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=23.08 is equal to 36.41. Thus, the inequality (5.14) is satisfied and the test results should be considered successful.
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Alternative climatic forecast and unconditional probability distribution of observed reservoir inflow values were used to estimate the applicability of long-range probabilistic forecasting of April inflow volume into Sayano–Shushenskoe reservoir. As mentioned in section 4.2, that distribution can be considered as three-parameter gamma distribution, where 
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According to  recommendations in section 5.2, the applicability of proposed probabilistic forecasting method can be tested using the criteria presented in section 3.3. As method 2 was used for probabilistic forecasting of inflow volume into Sayano–Shushenskoe reservoir, the estimate 
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=9.01 is equal to 3.84. Thus, the inequality (3.4) is satisfied and the methodology should be considered quite good and applicable for long-range probabilistic forecasting of April inflow into Sayano–Shushenskoe reservoir [5].

6.2 Short-range probabilistic forecast example
One-day ahead forecasting of daily stream flow for the Sochi River at Sochi is presented as example of short-term probabilistic forecast method (see sections 2.4, 3.2, 3.4, and 4.2). Regional snowmelt and rainfall runoff model is used for daily streamflow forecasting. The model parameters were estimated for each month from daily hydrometeorological observation series and daily weather forecast series (series length 
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 was used for development and verification of short-range probabilistic daily stream flow forecast method for the Sochi River. The values 
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 for methods 1, 2, and 3, respectively.

Anderson test showed no statistically significant autocorrelation for series 
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 for any method of calculating forecast errors for all months except May and June. To eliminate autocorrelation, the 2nd, 4th, 6th, etc. series members were removed from the series. Truncated series for May and June are long enough to carry out further analysis. Truncated series length 
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 = 279 (May) и 
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 = 270 (June) is quite satisfactory for further analysis.
The method 1 applicability test showed that coefficient estimates of correlation between squared forecast errors 
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 and forecast values calculated using (5.10) vary from 0.29 to 0.52 for different months. While 
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 = 5 %, the inequality (5.11) is not satisfied for any month and the correlation is statistically significant according to Pitman criterion. Thus, for every month, forecast error variance increases with increasing forecast value. Thus, the method 1 is rejected as the first condition of its applicability is not satisfied.
The method 2 applicability test showed that coefficient estimates of correlation between squared forecast errors 
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  and forecast values calculated using (5.10) vary from 0.29 to 0.52 for different months. While 
[image: image1588.wmf]α

 = 5 %, the inequality (5.11) is not satisfied for any month and the correlation is statistically significant according to Pitman criterion. Thus, for every month, forecast error variance increases with increasing forecast value. Thus, the method 2 is rejected as well as the first condition of its applicability is not satisfied.

The method 3 applicability showed the following.
1. Coefficient estimates of correlation between squared forecast errors 
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  and forecast values calculated using (5.10) vary from -0.03 to 0.06 for different months. While 
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 = 5 %, the inequality (5.11) is satisfied for every month. Thus, according to Pitman criterion, this correlation is not statistically significant. Thus, in this case, forecast error variance is independent of forecast value.
2. Forecast method 3 is based on the assumption that Sochi River streamflow logarithm forecast errors have normal probability distribution with zero mean and standard deviation estimates, 
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, for each month. The estimates 
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 are presented in table 6.3.

Table 6.3

Series length 
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 and estimates 
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 : streamflow logarithm forecast for the Sochi River at Sochi 

	
	I
	II
	III
	IV
	V
	VI
	VII
	VIII
	IX
	X
	XI
	XII
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	554
	508
	526
	540
	279
	270
	558
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	558
	540
	558
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	0,43
	0,37
	0,37
	0,22
	0,37
	0,44
	0,61
	0,87
	0,90
	0,99
	0,66
	0,52


With monthly series length taken into account, the above assumption was tested using the Cramér–von Mises–Smirnov criterion. The values 
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 calculated for each month using formula (5.13) vary from 0.11 to 0.26. For any feasible significance level 
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 do not exceed extreme values 
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 presented in table 5.2. Thus, the hypothesis that the streamflow logarithm forecast errors are normally distributed can be accepted for all months. Figure 6.1 demonstrates that the graph of Laplace distribution function 
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 (see formula (5.3)) coincides quite well with the graph of empirical distribution function with normalized arguments 
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   (for November) [6].
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Figure 6.1. Empirical (red dots) and normal (blue solid line) probability distribution of streamflow logarithm forecast errors for the Sochi River at Sochi
Thus, as all applicability conditions are satisfied, method 3 can be used for probabilistic short-range streamflow forecasting for the Sochi River at Sochi. Conditional probability distribution function 
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 are defined for each month by formulas (5.6) and (5.7), substituting the estimates 
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Due to flood hazard in Sochi region, probabilistic forecasting of stream flow (additional form 1) is of greatest practical interest. According to different categories of flood danger, municipal authorities established three critical (threshold) stream flow values 
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Q

 for the Sochi River at Sochi.
Table 6.4

Critical (threshold) stream flow values 
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 for the Sochi River at Sochi
	Category of flood danger
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	Storm alert
	300

	Adverse event
	500

	Dangerous event
	640


Depending on stream flow forecast 
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Figure 6.2 shows the function 
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 for the Sochi River at Sochi for November, the most flood-hazardous period for this region [6].
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Figure 6.2. Forecast probability function 
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 for the Sochi River at Sochi (November)
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